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PA Education and Training Modules for the Grains Industry

These education and training modules have been designed to provide information on the major topics considered relevant to adopting Precision Agriculture (PA) in the Australian grains industry. They are a resource for individual education, for use in developing training workshops or combining with established training materials. Each module focuses on a particular PA subject area and is delivered in up to four sections: 

· basic information - an overview of the important topics in the subject;

· advanced information - a more comprehensive treatment of the subject including expanded detail on the important topics;

· FAQ - common questions, exercises and handy tips; and

· supplementary information and archive - reference material to provide further detail or background knowledge if required.

Individuals can delve to the level of detail they require from each module. Training coordinators can choose the combination of subjects, specific topics and appropriate level of information in each to suit the knowledge of the trainees and the specific goal of a training program. The material in the Basic, Advanced and FAQ sections is provided in ‘open access’ form.  The text, figures and tables can be extracted and used in other presentation formats.  

The modules include some information previously published in the GRDC PA Manual (2006) and also some authorised third party material is included in the supplementary and archive sections. Original references are included for these where necessary and should be used if the material is reproduced or displayed. 

The general reference for the modules is:
PA Education and Training Modules for the Grains Industry.
Produced by Brett Whelan and James Taylor

Australian Centre for Precision Agriculture, University of Sydney 

for the Grains Research and Development Corporation

(2010).

DISCLAIMER

This publication has been prepared in good faith on the basis of information available at the date of publication without any independent verification. The Grains Research and Development Corporation and the Australian Centre for Precision Agriculture do not guarantee or warrant the accuracy, reliability, completeness of currency of the information in this publication nor its usefulness in achieving any purpose.

Readers are responsible for assessing the relevance and accuracy of the content of this publication. The Grains Research and Development Corporation and the Australian Centre for Precision Agriculture will not be liable for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information in this publication.

Products may be identified by proprietary or trade names to help readers identify particular types of products but this is not, and is not intended to be, an endorsement or recommendation of any product or manufacturer referred to. Other products may perform as well or better than those specifically referred to.
Spatial prediction for PA

Precision Agriculture (PA) tools such as crop yield monitoring, soil electrical conductivity measurement and intensive soil sampling have provided spatially dense data sets for use in crop management. The desire to extract valuable information from these data sets has also brought the process of digital map construction into wider use. All digital maps are based on some form of map model. They usually require a spatial prediction procedure to produce a continuous surface map. The particular map model and the spatial prediction procedure chosen have an impact on the predictions and the final map. 

Any form of spatial prediction is based on the premise that observations made in close proximity to each other are more likely to be similar than observations separated by larger distances. This is the concept of spatial dependence which has been discussed earlier. The process of spatial prediction requires that a model of the spatial variability (spatial dependence) in a data set be constructed or assumed so that estimates for the prediction points may be made on the basis of their location in space relative to actual observation points. It is the form of these models, and the assumptions underlying the choice of the same, which generally distinguish the major spatial prediction methods. A basic taxonomy of spatial prediction methods has been organised using two categories of predictors, namely global or local, or interpolating or non-interpolating.
Types of spatial predictors

Global predictors
Global methods use all the data in a data set to determine a model for spatial variation and then apply the one model to the prediction process at all unsampled points. They therefore use all the data for each prediction which may be computationally expensive for large data sets.  

Local predictors
Local predictors use only points 'neighbouring' the prediction point in the prediction operation. A singular form of variance model may be constructed for the entire data set and applied in each neighbourhood, or an individual model may be constructed and used exclusively for each neighbourhood. Local methods may therefore be the preferred option, especially on large data sets and where a single model may be inappropriate. 

Interpolators

Spatial prediction methods whose principle requires the prediction to exactly reproduce the data values at sites where data is available are said to act as interpolators. 
Prediction techniques

Potentially, a whole variety of prediction techniques may be used: global means and medians; local moving means; inverse-square distance interpolation; Akima's interpolation; natural neighbour interpolation; quadratic trend; Laplacian smoothing splines; and various forms of kriging.  

The prediction technique of choice for yield map production in PA will depend on the expected use of the map. However, real-time sensors that intensively sample variables such as crop yield produce large data sets containing a wealth of information on small-scale spatial variability. By definition, PA techniques should aim to preserve and utilise this detail. 

The more commonly utilised prediction methods of local moving mean, local inverse distance, and local kriging with a global semivariogram will be contrasted with a technique employing local kriging with a local variogram.  

Neighbourhood
A local neighbourhood contains the observations within a chosen radius (d) of each prediction point (di ≤20 has been chosen in this example) to be used in the prediction process. Twenty metres has been chosen based on the mixing inherent in yield monitor data, the spatial dependence range estimates from preliminary data analysis and the desire to include a minimum of 100 observations for spatial modelling. All the methods used in this example will provide estimates using a local prediction procedure.     

General model for prediction
Prediction methods operate on the basis that the yield value Y(x0) at any unsampled location x0, (where x denotes a two co-ordinate location descriptor) can be estimated using the values Y(xi) from the sampled locations xi, where i = 1,2,3.......n, using the generalised function (Equation 1).
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(Eq. 1)

where:
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  =
the weight assigned to yield value Y(xi) at point xi 

All the prediction techniques to be applied in this study are linear predictors and use equation 1 such that:
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(Eq. 2)

The various prediction techniques do differ in the methods used to calculate the weights. These differences arise from contrasting agronomic assumptions regarding the spatial interdependence of yield estimates and to some extent the degree of certainty placed in the observed data. To ensure that the predictions are unbiased, the weights for each estimate must fulfil the condition of Equation 3 by all summing to one. 
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Local moving mean

The weights for the local moving mean prediction are determined for each prediction point using Equation 4.

 wi
=
1/n

for di ≤20 m




(Eq. 4)

where:

di
=
linear distance of observation Y(xi) from the prediction location x0

Here the weight is obviously uniform for all observations, which assumes all observations within the neighbourhood have equal relevance to the yield at the prediction location. The spatial dependence is only a function of distance in so far as 'd' restricts the radius of the observation neighbourhood.  

Inverse distance 

The inverse distance weights are determined for each prediction by Equation 5.


w
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for di  20 m


(Eq. 5)

where:

di
=
linear distance of observation Y(xi,) from the prediction location x0
p
=
integer power parameter

Here the weights are calculated on the assumption that yield observations are correlated in space according to a universal function based separation distance between observations. No account is taken of the true spatial variance structure of the data set. Commonly p=2 is employed and the procedure is termed 'inverse distance squared'. Observation points further than five metres away from the prediction location are given little influence. 

Local kriging with a global variogram

The kriging process relies on the semivariogram model to provide a function describing the spatial variance structure of the data set. The generalised form of the spherical semivariogram model is shown in Figure 1. The spatially dependent range is given by ‘a’, the nuggget or close range variation by ‘C0’ and the variation attributable to spatial relationships ‘C’. Together C0 and C combine to delineate the maximum or sill semivariance, which is approximately 95% of the variance of the data set. While the semivariogram model is also a function of separation distance, unlike equation 5, the model is conditioned on the actual spatial dependence observed in a data set.  
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Figure 1: Spherical variogram model showing the parameter details.
In this method a semivariogram model is fitted to the full data set, providing a single model (global semivariogram) for the spatial variance structure in the field. Weights are then obtained for the neighbourhood observations surrounding each prediction point through the kriging process which solves the Equation 6 series.
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(Eq. 6)
for di ≤ 20 m

where:
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Lagrange multiplier
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semivariogram model for the function Y(x) 

The equations are solved using the Lagrange multiplier in an optimisation method that ensures the prediction is unbiased and minimises the prediction variance. The prediction or kriging variance 
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(Eq. 7)

The standard error of the prediction is the square root of the variance. This allows some assessment of the quality of the prediction based on the variogram model and the variability in the local data set.  

Local kriging with a local variogram
Unlike the global semivariogram method, this technique models a semivariogram for the data in each 'neighbourhood' around the prediction point. This provides a local model (local variogram) for the spatial variance structure that is intrinsic to the data that will be used in each prediction. The variograms are individually applied using the kriging process within each neighbourhood.  The weights are obtained as shown in equation 6. The provision of a measure of prediction variance in both these kriging procedures is unique amongst the methods.

Block kriging

Spatial prediction need not be at points, as has been the focus of the previously described methods. Prediction can be made for ‘blocks’, e.g., 10 x 10 metres. In many cases it may be advantageous for 'block' estimates to be determined so that values for ‘minimum areas of interest’ (MAI's) or management units can be represented. 
In the process of block kriging these blocks can overlap. For example, in a yield map predicted on a 1 metre raster, each prediction point can represent the 'average' yield to be found in a 10 x10 metre block centred on the prediction point. Geo-statistical methods appear the most advanced for such predictions, particularly for site specific crop management where an estimate of prediction accuracy is required. Block kriging may be performed with a global or local variogram.

In any form of cell-based estimation or block prediction method, the cell size and/or prediction block size will affect the smoothness of any subsequent map. Bigger cells/blocks equal smoother maps. This also holds true for the neighbourhood size chosen in the point prediction methods described earlier. 
Smoothness can also be affected by the spatial dependence models underlying the prediction methods because the models control the weight attributed to observations. Only in the kriging procedures is the model (semivariogram) conditioned on the actual observation data set and not on an arbitrary function of distance. The range parameter of the semivariogram (which estimates the distance of spatial correlation between observations) is therefore a tool for determining sensible neighbourhood or cell/block sizes.

A yield mapping example

Individual wheat yield values, collected at a frequency of 1 Hz from a 100 ha field in NSW, Australia, were randomly allocated into one of two equal-size datasets. One data set was used as input values for the prediction processes, the other provided the prediction locations and test values for a comparison of prediction techniques. Local mean, inverse distance squared and local kriging with a global variogram are compared along with local kriging with a local variogram. A search neighbourhood of 100 data points was standardised.

Table 1 shows the resulting frequency distributions and rankings of the prediction techniques in comparison to the observed values at the test locations. The rankings (1:4 - closest prediction to the observation value = 1) are calculated at each point and then summed for each technique. The final performance rank is allocated from the lowest to the highest sum of ranks.
	Technique
	No. of

observ.
	Max.

(t/ha)
	Min.

(t/ha)
	Mean

(t/ha)
	Sum of ranks
	Median

rank
	No. of ranks = 1
	Final

rank

	
	
	
	
	
	
	
	
	

	Test data
	26337
	6.26
	0.92
	3.71
	
	
	
	

	Local kriging with local variogram
	26337
	5.99
	1.01
	3.71
	59152
	2
	9150
	1

	Local kriging with global variogram
	26337
	5.88
	1.11
	3.71
	60688
	2
	7421
	2

	Inverse 

Distance squared
	26337
	5.71
	1.01
	3.72
	63382
	3
	4480
	3

	Local mean
	26337
	5.01
	1.87
	3.72
	80168
	4
	5284
	4

	
	
	
	
	
	
	
	
	


Table 1: Wheat yield frequency distribution and performance rankings for spatial prediction techniques on a 100ha field in NSW, Australia.

Here the estimates from the kriging procedures most closely match the observation values and thereby maintain more of the original frequency distribution. Local kriging with a local semivariogram has performed the best. Inverse distance-squared, while performing third overall, has registered the smallest frequency of number one ranks.  

A small portion (approximately one hectare) of a field has been chosen to visually demonstrate the results of the different prediction methods. The data in seven metre harvest runs is shown in Figure 2. A guide to what the original data may look like if the harvest runs were one metre wide and the same variability was maintained is shown in Figure 3.  
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Figure 2: Raw data harvest path.
[image: image13.emf]Original Data Representation (20 point mean)

40

50

60

70

80

90

100

110

5060708090100110120130140150160170

x (metres)

data representation<= 4.0<= 4.5<= 5.0

<= 5.5<= 6.0<= 6.5

<= 7.0<= 7.5> 7.5

Sorghum Yield (t/ha)


Figure 3: Representation of the true yield pattern if harvested in one metre strips.
Local prediction procedures that all use the closest 100 points as the neighbourhood for each prediction point are compared. The yield values are represented in 0.5t/ha classes. Figure 4 shows that the local moving mean tends to smooth out the data to encompass only four yield classes.  
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Figure 4: Local prediction using moving mean.

The inverse distance method (Figure 5) places a lot of variability in the map by virtue of honouring the very high and low peaks in the harvest data. It is easy to distinguish the harvest lines in the data. Because the inverse distance model is fixed, and its radius of influence is small, the map takes on the characteristic ‘spottiness’ of maps made using inverse distance squared.
in Figure 6 it can be seen that the global variogram has also smoothed out the map to a degree but the harvest lines are not evident because the variogram has captured a longer spatial dependence in the data set than the fixed inverse distance model. Data points from further out in the neighbourhood have been given some influence on the prediction at each point.

Local variograms have restored some of the local variability in the map (Figure 7) because the changes in spatial dependence between the local neighbourhoods have been included. If the prediction is changed from point estimates to estimates representing the yield in a 10 metre block around each prediction point, then some of this variability is removed (Figure 8). This procedure is extremely useful with data sets where the accuracy in the original data is low or unknown. Yield estimates from yield monitors should be considered in this class.  
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Figure 5: Local prediction using inverse distance squared.
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Figure 6: Local prediction using point kriging with a global variogram.
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Figure 7: Local prediction using point kriging with a local variogram.
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Figure 8: Local prediction using block kriging with a local variogram (10 metre block).

Block estimates allow the map to represent each value as an estimate of the yield within an area, the size of which reduces the error on the original data set to a satisfactory level. For yield monitoring this should be determined by displacement and flow experiments, but on average, blocks of 20m have been identified as a good resolution. The 20 metre block example (Figure 9) shows the main spatial structures and gradual changes between the classes.  
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Figure 9: Local prediction using block kriging with a local variogram (20 metre block).

While not fully representing what was seen by the yield monitor, the procedure provides high confidence that what is being shown is actually representative of the variability in the field.     
Comparing techniques

[image: image30.jpg]The significant influence that the form of spatial prediction chosen for map construction has on the final prediction surface is not a new concept. A number of studies show that, in general, inverse distance techniques are sensitive to the degree of inherent variability in a data set, the neighbourhood population used in each prediction and the power of distance used in the weighting calculation. Alternatively, the accuracy of ordinary kriging generally displays little sensitivity to the variability in the data sets, and the accuracy of the estimates improves with increasing neighbourhood populations. 

The observed inefficiencies of the inverse distance squared prediction technique can be attributed to two main problems. Firstly, the spatial variability in a data set is not used to determine the spatial dependence model for use in the prediction process. Secondly, the method is an exact interpolator that passes through the data points, and this may not be sensible if there is uncertainty in the observations. Kriging only operates as an interpolator if the semivariogram nugget value (C0) equals zero. With any positive C0 value, close range uncertainty in the observations will be reflected in the kriged surface. Such uncertainty may arise in either the value of the observed attribute or its spatial location.  

This point is often overlooked in assessing the suitability of prediction techniques but should be given a high priority in PA given the potential (and real) errors associated with real-time sensors and GPS receivers. In such cases, block kriging estimates for an area should prove extremely useful in reducing the carryover of errors into the final maps. Block kriging also offers a robust method for estimating values for the smallest differentially manageable land unit (usually governed by implement width and operational dynamics). 

Block kriging may be undertaken using a global semivariogram but once the number of data points rises above 500 it seems wasteful to assume a single semivariogram within the field. A global semivariogram may prove too restrictive in its representation of local spatial correlation whereas local semivariogram estimation and kriging offers the ability to preserve the true local spatial variability in the predictions. If the chosen neighbourhood is reasonably small, the use of local semivariograms should also negate the possible requirement for trend analysis and removal prior to semivariogram estimation and kriging. 

A further advantage in the use of kriging techniques lies in the provision of a prediction variance estimate which may be used to produce confidence limits on the predicted values. The reporting of such limits would be useful for digital maps as they will have important ramifications on the extrapolation of management information. The uncertainty may also be used to determine the most suitable mapping class delineations. For example, if the 95 per cent confidence interval in crop yield estimates is +/-1.0t/ha, classifying a field using classes less than 1.0t/ha may be misleading. A classification system based on the uncertainty in the yield data may prove useful in the future.    

Summary
Spatial prediction methods used in PA should accurately represent the spatial variability of sampled field attributes and maintain the principle of minimum information loss. However, data used in any spatial prediction procedure should be of known precision and that precision used to guide the choice of spatial predictor. Due to imprecision in crop yield measurement and within-field location, interpolators (exact spatial predictors) are generally not optimal.  

The results presented here show that the form of spatial prediction chosen for mapping yield has a significant influence on the final prediction surface. Local kriging using a local variogram appears well suited as a spatial prediction method for dense data-sets. In particular, local block kriging reduces the estimate uncertainty when compared with punctual kriging and may be an optimal mapping technique for the current generation real-time yield and soil sensors.

Making yield maps with Vesper

This short guide is designed to provide a simple guide to the production of yield maps using local block kriging (a spatial prediction method) in the shareware program Vesper. 
Basic data manipulation
Converting geographic coordinates into Cartesian coordinates
(Latitude and longitude to Eastings and Northings)
Most yield monitors record position using geographic coordinates, i.e. latitude and longitude, which use degrees to identify position on the earth. This is preferable as geographic coordinates are unique locators, and there is no doubt about where the reading was taken. The disadvantage with using geographic coordinates is that while the position is absolute the distance (in metres) between points separated by a degree is relative to latitude. Points separated by a degree at the equator are much further apart than points separated by a degree near the poles. 
To overcome this problem, position information is usually transformed onto a flat surface where the distances are converted to metres. These are known as Cartesian coordinates, and latitude becomes a ‘Northing’ and longitude becomes an ‘Easting’. The projection process that is commonly used is known as the universal transverse mercator (UTM).  
Eastings and Northings values are relative to a fixed point (datum). Australia has its own datum, Geodetic Datum of Australia 1994 (GDA94), which is based on the Geodetic Reference System 1980 (GRS80) and is very similar to the World Geodetic System 1984 (WGS84). Effectively the three can be interchanged with little loss in data accuracy. To properly describe a location with Cartesian coordinates, the datum, projection and zone in which they are located needs to be quoted.

There are several older Australian datums (e.g. Australian Geodetic Datum 1966 (AGD66)) however GDA94 is now the standard and recommended datum. For users already using an older or different datum there will be no problems as long as the datum is recorded so transformations between datums can be performed if data sets are to be merged. Some advanced PA software can perform coordinate transformations. If not, the NSW government has also produced a freeware program, GEOD, that can perform coordinate transformation on large files. It will transform between datums but also between geographic and Cartesian coordinates. Details of GEOD can be found on the NSW Department of Lands website. 
http://www.lands.nsw.gov.au/survey_and_maps/geodesy/gda/geod_software 
A guide to applying it to PA data is included in the Supplementary section of Module B – GNSS and Precision Agriculture.
The main advantages of converting yield positions into Eastings and Northings (i.e. metres) is the ability to be interpolated onto a regular grid where the measurement of distances and areas within fields is in metres. The yield data is then also compatible with other data sources (e.g. imagery, both aerial and satellite), that are usually delivered in Cartesian coordinates.
Removing erroneous data points
Raw yield data files will contain erroneous data caused by many factors. These include lost or incorrect GPS signals, spikes in the yield or speed sensors, a narrowing of the cutting width, turning with the comb down and numerous other operational problems. Some of these errors produce data points that lie outside of the range of the majority of the data and are termed ‘outliers’. Some error points however lie within that range and are termed ‘inliers’. 

Outliers are generally easy to remove following these steps:

Firstly, remove any data above and below a determined threshold. In general upper and lower thresholds of 10t/ha and 0t/ha should be applied. The rationale is that yield above 10t/ha in grain, oil and pulse crops are highly unlikely in Australian conditions (rice and some corn crops excluded). Yield files will also contain zero values from harvest operations, in particular harvester fill-up and empty, when beginning and ending runs or turning.

After removing these extreme values, remove values that lie outside the range of the mean (average) plus or minus 2.5 standard deviations. This will remove the top and bottom 1.5 per cent of data which should eliminate the outliers in most yield files. The best way to test if this is the case is to identify points that lie outside this distribution and plot a histogram of the data. In some cases outliers will remain and the distribution should be restricted to the mean plus or minus 2 standard deviations. This process can be achieved in Microsoft Excel or other statistical packages. 
Yield data tends to have a fairly well defined range of values, However, some datasets will have skewed data. In this case further data mining is needed to determine if the ‘tail’ is real. The best way to do this is to label the data points in the tail then plot as an X by Y graph. If the data fall into a discrete area then they are probably real. If they are scattered randomly throughout the plot then they are probably artefacts. 
Inliers are harder to identify and remove. Inliers often occur when the effective cutting width is decreased or the speed of harvest changes dramatically. Positional errors are also possible when GPS problems occur, or when cutting around trees, or other operations that mean previous harvest paths are crossed or closely approached. These points are less problematic though if a spatial prediction process is used that allows for the smoothing of these errors. There are a number of yield data filtering software programs available that identify these points with varying degrees of success (i.e. Yield Editor and Yield Check). 
Currently, following the simple protocol above and using an appropriate mapping tool will provide maps that will be suitable for use in PA management.

Kriging using Vesper for yield maps
The advantages of using kriging to map dense spatial data is being realised and incorporated into larger more advanced software packages, particularly Geographic Information Systems (GIS). Most PA software however only use a moving mean or inverse distance weighting function. A shareware program, Vesper, has been developed by the Australian Centre for Precision Agriculture (ACPA). It can be downloaded from the ACPA website.

www.sydney.edu.au/agriculture/acpa 
This program is aimed specifically at spatial prediction for large, dense datasets such as yield data. Vesper is currently set up as a research tool and this section is aimed at providing guidelines for lay people to use the program. It is not an attempt to explain the statistics and theory behind kriging. More detailed information on the program and the kriging procedure can be found in the operating manual in the archive of this module and in Whelan et al. (2001) at the end of this document.

Vesper is designed to accept comma-separated text files. It requires at least three columns - Eastings, Northings and one variable to be predicted. The program will accept up to 50 variables in a single input file. Vesper relies on Cartesian coordinates not geographic so positional information must be converted from longitude/latitude to Eastings/Northings.

The program contains four master buttons and three tabulated pages (Figure 10). The four master buttons are always accessible regardless of the tab being viewed. The first master button (‘run kriging program’) activates the prediction process. The second button (‘save control file’) saves the control file and is seldom required. The third and fourth master buttons provide information about the program (‘about’) and close the program (‘exit’). The three tabulated pages are described below in view of setting up the program to predict yield data.

Files Tab 

[image: image20.jpg]
Figure 10: Files tab in Vesper.
The first step when using Vesper to predict yield data is to locate the relevant data files.

· Specify the trimmed yield file, with Cartesian coordinates either by navigating in the windows on the left-hand side of the screen or clicking on [image: image21.jpg] and browsing.    

· Click the ’select data’ button and specify the X (Eastings), Y (Northings) and desired data column.

· Specify the desired output location (‘output directory’) and file name (‘kriged output file’). Ensure that the file name has a “.txt” extension.

· Leave the report file, control file and parameter file as is.

Kriging Tab 
[image: image22.jpg]
Figure 11: Kriging tab of Vesper.
Next, move to the ‘kriging’ page (Figure 11).
· Select block kriging for the method

· Specify the ‘block size’ as 20m. This figure is used as it has been found to approximate the distance over which a harvester mixes  grain before it reaches the sensor.

· Leave the default values for ‘search radius’ and ’neighbourhood for interpolation’.

· Do not check the ‘non-negative weight’ or ’lognormal kriging’ boxes.
· Ignore the ‘rectangle interpolation’.
· Specify the grid file on which the data will be predicted.  

· If a grid file already exists then click the ‘define grid file’ point, browse to the desired file and select. REMEMBER the same grid file should always be used for a field.
If a grid file does not already exist then click the ‘generate boundary’ button. This prompts a new window displaying the layout of the data points in the file (Figure 12). This window is used to draw a boundary within which the grid will be made. Right click the mouse button on a corner of the field then left mouse click around the field in an orderly clockwise or anti-clockwise direction to form a boundary for the data. Right mouse click to finish. This will prompt you to save the boundary as a boundary file. Click ‘OK’ and save the boundary.txt file. With the boundary still displayed in the window, click [image: image23.jpg] in the bottom right of the window, to create a grid. A 5m grid is recommended for most broadacre crops. This grid file should be saved somewhere accessible as it will be used for the interpolation of other data sets.

[image: image24.jpg]
Figure 12: Boundary definition window of Vesper.
Possible errors
If only a few points are displayed instead of the entire field it is likely that there are some erroneous coordinate data points (e.g. a (0,0) reading) and the X and Y columns need to be checked for outlying points before beginning again. After creating the boundary file, if a grid cannot be derived, make sure the field is being displayed in Cartesian (metres) and not geographic (degree) coordinates.

Variogram Tab
[image: image25.jpg]
Figure 13: Variogram tab of Vesper.

The variogram page (Figure 13) allows users to specify calculation methods, models and weighting.
· Select ‘local variogram’ in the variogram calculation

· Select ‘exponential’ for the variogram model

· Select ‘no_pairs/Std-dev’ for the weighting

· Check the ‘plot variogram’ and ’plot map of interpolation’ boxes if you wish to see the variograms and map as it is made. The program will run slower with these options on however you can see if the process is working correctly.

· Ignore the ’fit variogram’ button

· Ensure the ‘compute variogram’ point is checked.

· Check the ‘define max distance’ box and specify a distance of 60m. Leave the other boxes in the ‘variogram computation’ box at default settings.  
When all this is done click the ‘run kriging program’ in the top left hand corner of the general interface. The program will initially sort the data then start the kriging process. If the ‘plot map of interpolation’ and ’plot variogram’ boxes have been left checked in the variogram tab, then each local variogram function will be displayed along with a continuously updated yield map (Figure 14).

[image: image26.jpg]
Figure 14: Screen snapshot of local kriging in operation. The left hand plot shows the local variogram estimation. The top right hand plot shows the grid point being estimated and the raw data points being used for the prediction. The bottom right hand side plot is a real-time map of the variable being interpolated.

At the end of the prediction process the prompt ’program finished exit window?’ is given. Select ‘yes’. Following this a prompt to ’view output graph?’ is given. Selecting ‘yes’ here will give two basic maps of the yield (left hand side) and the ‘error’ associated with the estimation that can be ignored in this context. Selecting ’no’ will terminate the prediction process.  

The mapping program in Vesper is very basic. It does have some basic functionality to alter the legend and to open other output files for display. However, as a mapping tool it is limited. Its’ main purpose is to display the interpolated output so as to identify any obvious errors before proceeding to properly analyse and display the data. Before using yield maps it is important to consider the reason for any regular patterns or straight line effects in the map (if present).  
Other types of PA data
Vesper can also be used for predicting other data sets derived from real-time on-the-go sensors such as apparent soil electrical conductivity (ECa), gamma radiometrics, high precision GPS for elevation, moisture sensors and protein sensors. For all these data sets following the basic rules above will provide maps of the variables. The important points to consider altering are:

· block size. It is best to set the block size to the swath width of the measurements in the data set. For example, an EMI survey at 40m wide swaths should have the block size set to 40 x 40; and
· maximum distance (variogram tab). As a rule this should be at least 3 times the block size to ensure multiple swaths across the paddock are included in the computations.
The protocol outlined here is not valid for sparser, point sampled data such as tiller counts and soil pit survey data. Sparser data sets require global kriging which is described in the Vesper manual in the archive of this module.


Vesper - basic rules for yield data
Before using Vesper
- always trim the yield data to remove artefacts
- convert longitude and latitude to Eastings and Northings (metres)
Kriging Tab
- use block kriging with block size of 20 metres for yield mapping

- the first time Vesper is used, establish a grid for the field (5m or 10m)

- always use the same grid file when predicting yield data from different years

Variogram Tab
- use a local Variogram with exponential model and weighting of no_pairs/Std_dev

- define the maximum distance for the variogram computation 

(60m for yield data)

DON’T PLAY WITH THE OTHER BUTTONS....

Archive documents
Vesper manual

Full manual for operation of VESPER spatial prediction software.

Cleaning up yield data with JMP software

A step by step procedure for cleaning up erroneous data from yield data files using JMP software.
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