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PA Education and Training Modules for the Grains Industry

These education and training modules have been designed to provide information on the major topics considered relevant to adopting Precision Agriculture (PA) in the Australian grains industry. They are a resource for individual education, for use in developing training workshops or combining with established training materials. Each module focuses on a particular PA subject area and is delivered in up to four sections: 

· basic information - an overview of the important topics in the subject;

· advanced information - a more comprehensive treatment of the subject including expanded detail on the important topics;

· FAQ - common questions, exercises and handy tips; and

· supplementary information and archive - reference material to provide further detail or background knowledge if required.

Individuals can delve to the level of detail they require from each module. Training coordinators can choose the combination of subjects, specific topics and appropriate level of information in each to suit the knowledge of the trainees and the specific goal of a training program. The material in the Basic, Advanced and FAQ sections is provided in ‘open access’ form.  The text, figures and tables can be extracted and used in other presentation formats.  

The modules include some information previously published in the GRDC PA Manual (2006) and also some authorised third party material is included in the supplementary and archive sections. Original references are included for these where necessary and should be used if the material is reproduced or displayed. 

The general reference for the modules is:
PA Education and Training Modules for the Grains Industry.
Produced by Brett Whelan and James Taylor

Australian Centre for Precision Agriculture, University of Sydney 

for the Grains Research and Development Corporation

(2010).

DISCLAIMER

This publication has been prepared in good faith on the basis of information available at the date of publication without any independent verification. The Grains Research and Development Corporation and the Australian Centre for Precision Agriculture do not guarantee or warrant the accuracy, reliability, completeness of currency of the information in this publication nor its usefulness in achieving any purpose.

Readers are responsible for assessing the relevance and accuracy of the content of this publication. The Grains Research and Development Corporation and the Australian Centre for Precision Agriculture will not be liable for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information in this publication.

Products may be identified by proprietary or trade names to help readers identify particular types of products but this is not, and is not intended to be, an endorsement or recommendation of any product or manufacturer referred to. Other products may perform as well or better than those specifically referred to.



Advanced information - key points
· Understanding the type and source of the data being mapped is important.

· Using the filtering and hardware set-up options in PA data processing packages helps to manage the quality of the data. 

· Surface maps make point data easier to interpret but also allows various analyses to be performed between data gathered by different sensors or at different times. 

· The process used to make a map affects the appearance of a map and any future analysis.
· Choose an appropriate method for allocating data to colour ranges in a map because this affects the interpretation. 
· To compare maps over time, it is necessary to use a consistent allocation methodology. Different methods tend to enhance different sections of the data. 

· For the clearest interpretation and comparison of crop yield maps it is advisable to use the equal interval allocation method.

· Spending time visually checking a map for anomalies will reduce the possibility of making an incorrect assessment of management requirements.

· Soil apparent electrical conductivity (ECa) and gamma emission maps can be useful in interpreting the effects of soil variability on yield. A combination of the two techniques can prove even more useful in diagnosing changes in soil properties, especially in the ‘sandy’ soils of Western Australia.
Initial management of raw point data

While PA operations use raster data formats for delivery of satellite and aerial imagery, the majority of raw data is supplied in point form. This includes data on crop yield and quality, plant reflectance, soil properties and terrain attributes. The software available, the source of the data and the desired use all affect the way the data needs to be manipulated prior to mapping.
Using PA data processing packages
Crop yield data

Crop yield data is initially recorded in a proprietary format which varies with the brand of yield monitor. To read this data requires either the specific manufacturer’s software or an advanced level data processing package that can read a range of proprietary files. Once these files have been read, the individual software packages offer varying methods for managing the quality of the data to be used in final mapping. They do this by regulating the matching of yield data recorded from the yield sensor with location information recorded from the global navigation satellite system (GNSS) (flow delay control) and removing erroneous data points (cleaning).

Flow delay control 
As the flow of grain is recorded on the monitor, it is matched with information on the position of the harvester at that same time. With the yield sensor generally positioned at the end of the threshing and separating process, there is a delay period between the crop entering the harvester and the flow being registered at the sensor. To calculate the correct yield in tonnes/ha and put it at the correct place in the field, this delay needs to be accounted for. 
The grain flow and harvester positions are recorded with a time stamp so it is possible to shift the recorded grain flow measurements backward relative to the position information by an amount equal to the delay period. This will rectify the calculated yield with the correct location in the field. Most yield monitoring software and PA-specific data processing packages allow this delay to be designated prior to mapping. Many systems employ a general default delay of 10 seconds.
Some systems also provide the ability to adjust for the specific delay periods encountered as the harvester fills and empties at the beginning and end of harvest passes.
Maximum and minimum yield levels 
The data points above a maximum yield level and below a minimum yield level are removed. Extremely high yield recordings can be caused by the harvester abruptly slowing and extremely low yields can be recorded as a result of driving with the comb down but not harvesting or by incorrect flow delay settings. These levels are usually user-controlled and allow outliers in the calculated crop yield to be removed regardless of where they occur in the field.
Other data
All other point-based sensor data that is likely to be acquired for use in PA will be supplied in a ‘.txt’ or ‘.csv’ format. Each software package will have its own processes for importing data.
In general, data provided in this manner will be supplied by a third party and should not require further treatment. However, if it is being gathered personally it is important to ensure:

· any offset between the position of the GNSS and the sensor is taken into account
· extreme outliers are checked for and removed using spreadsheets or other statistical software.
The data from crop yield monitors and other sources can then be mapped with whatever methods are provided by individual software packages.

Using task-based or generic GIS software
Crop yield data

Crop yield data can be exported from the PA data processing packages in a number of formats. The most common is a ‘.txt’ or ‘.csv’ format as these can be imported into almost any spatial or statistical software. 
These data files may be:

· raw sensor information that has not been cleaned of outliers. These files include flow, distance travelled, swath width and moisture information that may require flow delay control before conversion into yield (t/ha); or 

· processed data where yield has been calculated and the raw sensor information removed. Flow control and cleaning will not be required.
Both these types of data files will have the location information for each reading recorded in geographic co-ordinates (latitude and longitude) as gathered from the GNSS. Depending on the purpose of the final map and the software being used, it may also be necessary to convert the positions to Cartesian co-ordinates (easting, northing) before importation. 

There are a number of software options available to help convert the position information, clean the data of outliers and apply the flow delay control for raw data files. Freeware examples that provide options for all three tasks are Yield Check and Yield Editor. 
It is also possible to convert the position information in Australian files using Geod, a freeware program provided by the New South Wales Government. Spreadsheet and other statistical software can be used to implement flow control and outlier cleaning operations (see Supplementary information for more detail).  

Other data

All other point-based sensor data that is likely to be acquired for use in PA will be supplied in a ‘.txt’ or ‘.csv’ format and the same points should be considered 
The data from crop yield monitors and other sources can then be mapped with which ever methods are provided by individual software packages.
Making surface maps
Spatial prediction 
When plotted as individual points, raw, irregularly spaced data from yield and other sensors can be difficult to interpret. To make the data more presentable, most software used in PA will produce a continuous surface map from the yield points using spatial prediction. Continuous surface maps usually remove some of the noise in the raw data and present a more coherent map that may be more easily interpreted. A variety of approaches can be used to perform spatial prediction of the raw data. 

Apart from making a map, spatial prediction is also valuable from an analytical perspective. It permits data from different times and/or sources to be compared. When a field is harvested it is highly unlikely that yield from the same locations will be recorded in different years. This makes it difficult to merge data from different years and perform statistical analysis. Continuous surface maps provide the opportunity to compare values at the same points in the field over any number of yield maps. This allows the statistical, rather than visual, identification of stable and variable areas of crop production. Similarly data from other sensors, for example aerial imagery and on-the-go soil sensors, when predicted to continuous surface maps, can be included to examine yield determining factors.
How does spatial prediction work?
Spatial prediction is based on the concept of spatial dependence. This is the idea that samples or measurements (observations) of an attribute taken close to each other in a field are more likely to be similar to each other than those separated by larger distances.  
Spatial prediction requires a description of the spatial dependence in the form of a mathematical model. The model describes how similar the observations in a data set are, based on their relative locations. The spatial prediction process then applies this model to estimate values of the attribute at locations in the field where no observations were made (prediction points).
Spatial prediction methods
The value assigned to any prediction point is estimated using the observations from nearby sampled locations. The nearby observations are typically chosen by defining a ‘local neighbourhood’ boundary around the prediction point. This is done by specifying a maximum distance from the prediction point (e.g. 50 metres) within which observations will be used or the closest maximum number of observations (e.g. 100). Choosing the neighbourhood boundary is often user-definable in PA mapping software.

The degree to which the value from each nearby observation contributes to the prediction estimate is known as the ‘weighting’. The ‘weights’ are calculated from the model of spatial dependence. The spatial prediction methods used in PA can be distinguished by the model each uses for describing the spatial dependence in data sets. 

For the prediction process, each observation in the defined local neighbourhood around a prediction point is multiplied by its ‘weight’. The weight is expressed as a fraction (i.e. 0.6) and the size of the fraction depends on the number of observation points to be used in the prediction and how the model expects each observation value and the value at the prediction point to be related. To ensure that the predictions are kept in the correct data range, the weights allocated to the observation values for each prediction must add together to equal 1.0 

There are 3 main spatial prediction methods for PA:
· moving mean;
· inverse distance; and
· kriging. 
Moving mean
The mean (average) of observations within a local neighbourhood around the prediction point is allocated to the prediction point.

The applied weight is uniform for all observations in the neighbourhood, which assumes all observations have equal relevance to the yield at the prediction location. 

Inverse distance 
This prediction process weights observations within the defined neighbourhood in proportion to their distance from the prediction point. Closer observations receive a higher weighting than those further away. 
The weights are calculated on the assumption that any observations,  e.g. yield, soil or reflectance, are related to each other according to a ‘universal’ function based on the distance between observations. No account is taken of the relationship in the actual data set being used. Commonly the weights are calculated proportional to the square of the distance (d2) and the process is termed 'inverse distance squared'. The effect of raising the power of the distance effect (d, d2, d3 etc.) is to reduce the weighting to observations in the neighbourhood that are farthest from the prediction point (Figure 1). With inverse distance squared, observations further than five metres away from the prediction point are given little influence.
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Figure 1: Weights for prediction as determined by inverse distance spatial prediction.

Some PA mapping software provides a combination of inverse distance and moving mean spatial prediction. This is to overcome situations where the inverse distance process causes the resulting map to appear ‘spotty’. The user has the option to choose a distance or ratio that applies a mean weighting for points up to the chosen distance away from the prediction point, and then applies the inverse distance effect to those observations further away. This has the effect of smoothing the map (Figure 2). 
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Figure 2: Weights for prediction as determined by the hybrid of moving mean and inverse distance spatial prediction.
Kriging
Unlike the universal model used in inverse distance, kriging examines each data set to determine the best model to describe the relationship between the observations. The relationship is still based on the distance between observations, but it is tailored for each set of observations. The kriging process uses the ‘variogram’ to model this relationship.  
The variogram model may take a number of different shapes, depending on the dataset. A generalised example of a variogram model is shown in Figure 3.  It essentially describes the amount of variation to be found in the data as the distance between observations increases. Weights are then obtained for the neighbourhood observations surrounding each prediction point using this model in the kriging prediction process.
The variogram model can be calculated from a whole-field data set to provide a single model for use at all prediction points (global variogram). Alternatively, a variogram can be calculated in each neighbourhood for use only at the local prediction point (local variogram).
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Figure 3: A variogram model used in the kriging process.

Comparison of maps

The moving mean process produces the smoothest map of the three spatial prediction methods (Figure 4a) because all observations are given equal weight in the prediction. The ‘smoothness’ is accentuated because prediction points in close proximity to each other will often share a number of observation points, and without some form of distance weighting, the predictions will inevitably be similar.

The inverse distance method incorporates more variation because of the distance weighting. Figure 4b is a map made using inverse distance squared. 
(a)
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Figure 4: Maps of the same crop yield data made using different spatial prediction processes: (a) moving mean; (b) inverse distance squared; and (c) kriging.
The ‘spottiness’ of the map is a result of the predictions being strongly influenced by observations very close to the prediction point locations.

The map made using the kriging procedure (Figure 4c) includes more variation than the moving mean map, but none of the ‘spottiness’ of the inverse distance squared map. The influence of observations on predictions is determined by the data set and so the overall field variability is represented.
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Using a combination of inverse distance and moving mean will produce a map with intermediate variation, depending on the smoothing parameters chosen. This process, or moving mean by itself, would be preferable to the inverse distance method if kriging was not an option in the available mapping software.  

Interpreting data maps for PA
When visually interpreting the information in maps produced from PA data it is important to not only understand which process has been used to make the map, but also how the data has been separated into the colour categories. 

Allocating data into colour categories

Most yield-mapping programs will allow the user to select different allocation methods. The methods that are likely to be found in PA software are: 

· equal interval – the data is split into a user-defined number of categories which each span an equal range of the data (e.g. 0.5t/ha increments), so the number of points in each category will usually vary;
· quantiles – the data range is split into a user-defined number of categories that each represent a fixed percentage of the data.  For example, five classes means that each category will contain 20 per cent of the data (100%/5=20%). The categories will contain the same number of points, however the width of the ranges will usually vary;
· standard deviation – creates categories based on the variation in the data. Categories are created above and below the overall mean, with ranges equal to a user-defined portion of the standard deviation of the entire data set. One standard deviation above the mean covers 32 per cent of the data, and an additional standard deviation category covers a further 16 per cent of the data.  The same applies below the mean, so that four standard deviations (two above and two below the mean) will cover 96 per cent of the data. The categories therefore span an equal range in the data, but the number of points in each will vary. More points will be allocated to the first categories on either side of the mean;
· natural breaks - creates a user-defined number of categories based on minimising the variation within each category. The categories will contain an unequal number of points, and the width of the ranges will vary;
· user-defined intervals - allocation of the data values into categories that cover ranges as defined by the user. The category ranges need not be equal and the number of points will usually vary; and
· linear stretch – usually only applied to raster imagery data where the full data range is stretched over a colour gradient.  This can cause difficulties in comparison if the upper and lower ends of the range are not consistent between years.
There are a number of implications for visual interpretation when using each of these allocation methods (see Figure 5): 

· equal interval (Figure 5a) can hide variation if the yield ranges are not scaled to fit from the minimum to the maximum of the data being mapped. As long as the scaling is correct, it is easy to set the category range to a figure of agronomic significance so that variation is easy to interpret and compare across maps;
· quantile allocation (Figure 5b) can exaggerate variation because it puts the same number of points into each category, and so the low and high categories have larger ranges than with other methods;
· standard deviation (Figure 5c and 5d) tends to smooth out variation as it allocates more points to the categories closer to the mean for the field. This results in the higher categories having smaller ranges and so they appear less prominent;
· natural breaks (Figure 5e) appeals when the aim is to make categories where the points within are as similar to each other as possible. This process appears closest to the equal interval procedure when the number of categories is reasonably high (>5). However this allocation will not be consistent from map to map, making comparisons less simple;
· linear stretch (Figure 5f) exaggerates the variation because, like the quantile method, it gives equal importance in separation to the low, mid and high values; and
· user-defined (Figure 5g) allows custom maps to be made when looking for particular cut-offs in variation. These maps are unique.
To compare maps over time, it is necessary to use a consistent allocation methodology. The different methods shown here will tend to enhance different sections of the data. For the clearest interpretation and comparison of crop yield maps it is advisable to use the equal interval allocation method.
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Figure 5: Maps of the same crop yield data with colours allocated to categories using (a) equal interval, (b) quantiles, (c) 1 standard deviation, (d) 0.5 standard deviation, (e) natural breaks, (f) linear stretch and (g) user-defined methods.
Yield map interpretation: a guide to anomalies

	Yield Map Interpretation

A Guide to Anomalies

	Straight line effects
	Irregular effects

	
	
	
	

	Along working direction
	Across working direction
	Curved or wandering lines
	Patches

	
	
	
	

	Equipment or application errors during:
· sowing

· fertiliser

· pesticide
	Previous working lines, roads or soil compaction
	Poor fertiliser or soil ameliorant spreading
	Natural topography changes leading to: 

· waterlogging 

· frost damage

	Different sowing dates
	Old fence lines
	Contour banks
	Weed infestation

	Different varieties
	Underground pipes, drains, utilities
	Other changes in topography
	Changes in soil type or fertility

	Different chemicals
	
	Spray drift
	Impacts of previous management or crop productivity

	Different fertiliser
	
	Insect damage on borders
	Disease impact

	Different sowing conditions
	
	Prior streams
	Insect damage

	Soil compaction
	
	
	Fire or hail damage

	Old fence lines
	
	
	


Table 1: A guide to identifying and interpreting yield map anomalies
Interpreting soil ECa maps

The measured value of the apparent soil electrical conductivity (ECa) at a site reflects the combined impacts of a number of agronomically important soil properties. Table 2 shows how changes in these soil properties generally effect the magnitude of the soil ECa readings.
Because these soil properties are combined to varying degrees in soil across the landscape, it is presently not possible to provide a general interpretation guide based on ECa levels alone. However, local sampling of the combined variability in these soil properties at different levels of recorded ECa can be used to ‘ground-truth’ the data. Maps of the soil properties at the site can then be made using these local relationships.  

While the major contributors to the soil ECa need to be determined at each site, the relative patterns of variability will usually remain quite stable over the long term, even though the actual reading levels will vary between seasons as moisture and nutrient levels change.

	Field properties

	
	material
	soil

texture
	clay type
	moisture potential
	CEC
	salinity
	nutrients

	higher ECa[image: image24.jpg]Australan Centre for Precision Agriculture




	soil
	clay
	smectite
	saturated
	high CEC
	high EC
	high

N, P, K, Ca, Mg, Na

	
	
	
	
	
	
	
	

	
	stony soil
	silt
	illite
	field capacity
	
	
	

	lower ECa
	rock
	sand
	kaolin
	wilting point
	low CEC
	low EC
	low

N, P, K, Ca, Mg, Na


Table 2: The general impact of influential soil properties on soil ECa.
CEC = cation exchange capacity.
Interpreting soil gamma-radiometric maps
The measured value of the total gamma radiation emitted from the soil at a site reflects the combined impacts of a number of agronomically important soil properties. Table 3 shows how changes in these soil properties generally affect the magnitude of the gamma radiometer readings.

Because these soil properties are combined to varying degrees in soil across the landscape, it is presently not possible to provide a general interpretation guide based on gamma radiometric levels alone. However, local sampling of the combined variability in these soil properties at different levels of recorded emissions can be used to ‘ground-truth’ the data. Maps of the soil properties at the site can then be made using these local relationships.  

While the major contributors to the gamma emissions from the soil need to be determined at each site, the relative patterns of variability will usually remain quite stable over the long term.
	Field properties

	
	material
	soil

texture
	clay type
	moisture potential
	CEC
	Depth to rock or gravel
	nutrients
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higher TC
	rock 
	clay
	smectite
	wilting point
	high CEC
	shallow
	high

K

	
	
	
	
	
	
	
	

	
	stony soil
	silt
	illite
	field capacity
	
	
	

	lower TC
	soil
	sand
	kaolin
	saturated 
	low CEC
	deep
	low

K


Table 3: The general impact of influential soil properties on soil gamma emissions.
Using both soil ECa and gamma-radiometric maps for interpretation

As can be seen from Tables 2 and 3, the two types of soil measurement are essentially reversed in their response to rock or stones, the moisture content and salinity status of the soil. The potassium band of the gamma radiometer is also specifically influenced by changes in potassium in the soil. These differences mean that a comparison of maps from an ECa and a gamma-radiometric survey of the same site can prove very useful in pinpointing areas of soil with gravel near the surface, especially in generally sandy soils. The two maps can also be used to diagnose areas where soil moisture or salinity (and not necessarily clay or CEC) are likely to be influencing high soil ECa readings.
In Figure 6 the soil ECa survey (a) and the thorium emissions of a gamma- radiometric survey (b) both show a pattern of variability across a farm in Western Australia.  While there are some similarities in the patterns, there are areas where both the soil ECa and gamma emissions are low (site 1) and where the soil ECa is low but the gamma emissions are high (site 2). The difference in the gamma emissions is due to the presence of a ‘uniform’ sand at site 1, in Figure 7a and a very shallow sand over gravel at site 2 in Figure 7b. The gravel (rock) is as poorly conductive (low ECa) as the sand, but has a high gamma emission. The areas of high ECa site 3, in Figure 6a, are not picked-up in the gamma survey. These higher measurements are usually due to an increase in soil moisture content and an associated rise in soil EC due to salinity in these types of soil.
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Figure 6: Results of an ECa survey (a) and the thorium band from a gamma radiometric survey (b) on a farm in Western Australia (images provided by Precision Agronomics Australia).
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Figure 7: Soil cores taken from site 1 (a) and site 2 (b), showing the marked increase in the amount of gravel near the surface in (b) (images provided by Precision Agronomics Australia). 

In Figure 8, the relationship between the yield map and the individual soil maps is not strong. However when the two soil maps are considered together, the interpretation of the yield variability improves. The gamma-radiometrics again helps to pick the difference between the uniform sand at site 1 and the shallower sand over gravel in site 2. The canola yield map (Figure 8c) shows that at site 1 where there is the least gravel, the yield is lower than site 2. Just using the ECa map to try to understand the effect of soil variability on the canola yield would be difficult in this case.
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(c)
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Figure 8: Maps of soil ECa (a) and Thorium gamma emissions (b) and canola yield (c) from a field in Western Australia (images provided by Precision Agronomics Australia). 

Figure 9 shows a field where approximately 90% of the area is below an ECa reading of 10mS/m, indicating a sandy soil. With the addition of the gamma-radiometrics, a distinction between areas with gravel inclusions (site 2) and uniform sands (site 1) can be made. In this case, the soil with more gravel closer to the surface reduces the yield of the wheat crop. At site 3, where the ECa is the highest in the field, the thorium emissions also remain reasonably high but the yield increases to the field average. The interpretation being a potential increase in soil moisture at site 3. 
This example also highlights the need to consider other layers of information when interpretation is not straight forward. At site 4, both the ECa and Thorium emissions are as low as site 1, but the wheat yield is low. The potassium emissions (Figure 9d) show that the potassium levels are potentially lower at site 4 than site 1, but other influences, such as terrain, other soil constraints and pest pressures should always be considered during interpretation at a site. 
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Figure 9: Maps of wheat yield (a), soil ECa (b,) thorium gamma emissions (c), and canola yield (c) from a field in Western Australia (images provided by Precision Agronomics Australia). 
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