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1. INTRODUCTION AND REVIEW OF LITERATURE

IN seeking to improve the efficiency of field experiments the best size of
Plot has been the subject of much discussion. To determine this point
many experiment stations have conducted ““blank experiments” (some-
times called *“uniformity trials”), in which the produce from an area of
ground is harvested as a number of small plots. By combining data for
adjacent units the yields from plots of different sizes and shapes can be
determined and their variabilities compared. Although on some points
the results from these experiments have been gratifyingly consistent,
0o method of determining from these experiments the best size of plot
for any particular purpose has heretofore been suggested. Indeed, both
on this and on other points the usual methods of presenting the results
of blank experiments are often misleading.

1 Forlnerly Assistant Research Officer, Council for Scientific and Industrial Research,
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2 Heterogeneity in Yields of Agricultural Crops

The usual method of evaluating the best size of plot for a given set
of conditions is to refer to a figure like Fig. 2A (p. 5) which presents data
for a blank experiment with wheat using unit plots of } sq. ft. The
argument then is: from one to about four times the unit area reduction in
variability for increasing plot size is rapid. For plot sizes greater than
six times the unit there is little reduction in variability. Consequently
the optimum size is somewhere in the region of four to six times the
unit area.

This argument fails to observe the condition that the region of
maximum curvature depends entirely on the scale of the co-ordinates
against which the observations have been plotted. In Fig. 2B the
ordinate scale has been doubled and the abscissa scale has been reduced
to one-sixth. It gives the curve which one might ordinarily have drawn
if the unit plot had been 3 sq. ft. (z=6) instead of } sq. ft. The conclusion
would now be that the optimum size is somewhere in the region of
24-36 units. It will be shown that the relative rate of reduction in
variability is the same for the whole range of plot sizes explored, and
that consequently the above argument is fallacious.

An unscientific approach is again usually adopted when comparing
the reduction of variability due to increasing size of plot with the
reduction which is to be expected if the fertilities of adjacent areas of
ground were uncorrelated, or which is attainable by random replication
of unit plots. The latter condition is represented by the dotted lines in
Figs.2 and 3. This curve is useful for comparison, but since an hypothesis of
zero correlation between adjacent areas cannot be regarded as probable
(as was demonstrated by Harris, 1915, 1920) it is misleading to speak of
it as “theoretically expected”. Confusion thus raised seems to have
led a recent writer, Wiebe (1935), into an opposite error. Recognizing
that the disagreement of observed and so-called theoretical curves is due
to correlation, he has calculated a correlation coefficient for each plot
size and thence calculated back the *“theoretical coefficient of variation
when r#0”’. He has not, however, calculated any theoretical curve in the
algebraic sense of a locus of points conforming to some law, and the agree-
ment between observed and calculated values tells nothing except that
the arithmetic has been correct.

The usual method of representing the heterogeneity of a piece of
ground is to construct a fertility contour map after the fashion of Fig. 1.
This particular figure has been constructed from the yields of square
plots, 2 x 2 ft., centred at distances of 1 ft. (i.e. adjacent § sq. ft. units
were combined to show “moving averages™). But in the great majority
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of blank experiments unit plots have been long and narrow, and hetero-
geneity maps have been constructed from such units. For comparison
with these, other maps were constructed from the yields of oblong plots
orientated in both directions across the field described in § 2. The contour
lines thus obtained were found to run predominantly in the direction of
the length of plot, whatever that direction might be. This was so because
the long narrow plots failed to provide sufficient points showing where
contours might be connected across the lengths of plots. This leads to an
appearance of greater variability across the plots than along them, an
appearance which may often be, as in the present instance, wholly
fictitious.

No satisfactory quantitative measure of soil heterogeneity has here-
tofore been devised. Harris (1915) proposed using the intraclass corre-
lation coefficient of yields from adjacent areas as a “coefficient of
heterogeneity . But although numerous workers have taken the trouble
to evaluate such coefficients for their data it does not appear to serve any
other purpose than to demonstrate that the fertilities of adjacent areas
are correlated. This is demonstrated equally well, if not indeed better,
and with much less labour, by a figure such as Fig. 2.

A number of blank experiments have shown that in some fields the
variation of fertility is greater in one direction than in another. In such
fields the shape of plot requires to be considered, since plots having their
lengths in the direction of greater soil variability are less variable than
similar plots orientated in a direction of lesser variability. In such
fields the arrangement of differently shaped plots to form blocks is
critical, and some apparently anomalous results reported in the literature
can be ascribed to the way in which the data have been grouped in
arbitrarily arranged blocks.

With regard to shape of plot as an independent factor affecting
variability the most extensive discussion has been given by Christidis
(1931). Following a theoretical discussion corroborated by a certain
amount of observational data this author concluded that “in no case can
Square plots be more uniform than long narrow ones”. Unfortunately
the premises whence this deduction emanates contain a limitation to
the arrangement of plots within blocks which is not consonant with
Practice and which appears to have been overlooked. It can be shown
also from published data, for example, Day (1920); Wood & Stratton
(1909), that long narrow plots may be more or less variable than square
ones depending upon their orientation. Nevertheless, it does appear that
long narrow plots tend to be on the average less variable than square

1-2



4 Heterogeneity in Yields of Agricultural Crops

plots, a finding which agrees with the observation that adjacent areas
tend to be more closely correlated than more distant areas.

2. A BLANK EXPERIMENT WITH SMALL PLOTS OF WHEAT

Results of previous blank experiments have consistently shown that
for a given area of ground maximum accuracy can be attained by the
use of the smallest plots that are consistent with other requirements.
In analytical yield experiments much of the labour is directly propor-
tional to the “test area”, and this may, if required, be reduced to the
area occupied by a single plant per plot. In such extreme circumstances

Fig. 1. Fertility contour map (based on moving averages for yield of grain from areas
2 ft. 8q.)

the ratio of guard to test area will be unfavourable but may be counter-
balanced if the gain in efficient use of the test area is sufficiently great.
Nevertheless, a single plant per plot is unlikely to be efficient, and to
obtain information as to the lower limit of plot size for which the above
principle might apply a small blank experiment was conducted at
Canberra in 1934.

Description of the experiment. Wheat of the variety Waratah was
sown with a Woodfield dibber! which deposited the seeds uniformly 2 in.
deep and 2 in. apart in rows 6 in. apart. At harvest (December 1934)
four rows at each side and 1 ft. at each end of a row were discarded to
avoid border effects. The remainder—15 ft. (thirty rows) by 36 ft.—was

! The Woodfield dibber was invented and is manufactured by C. E. Woodfield at the

New Zealand Wheat Research Institute, Christchurch. It has been described in the First
Annual Report of the Institute (1930), p. 6.
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Fig. 2. Plot size and standard deviation per plot. Ordinate: standard deviation per
Elm (s,) in decigrams per } sq. ft. Abscissa: size of plot (x) in units of } sq. ft.
he dotted line indicates the reduction in standard deviation obtainable by combining
units (or in 2B groups of 6 units) which are not correlated. The solid line represents
the equation
8,=/(2137/2%1%).
Each point represents the average variance of all shapes of each size which could be

fitted into the total area (Table II).
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harvested as 1080 plots of } sq. ft. (1 ft. length of row).! The average
number of plants per plot was 5-:02 (from six seeds sown).

The full data for yield of grain and for numbers of ears per foot
length will be lodged in the archives at the Natural History Museum at
South Kensington and in the Division of Plant Industry at Canberra.

The soil heterogeneity of the area was found to be patchy and equally
variable in all directions. This is shown by a fertility contour map
(Fig. 1) constructed from the moving averages of plots 2 ft. sq., and is
corroborated by the mean squares between columns and between pairs
of rows (taken in pairs to give a width of 1 ft. and so be comparable
with the columns) being similar, namely 4739 and 4560.

The distribution of yields from unit plots was symmetrical and
differed from a normal distribution only very slightly in the direction
of a flat-topped curve?—g, negative but small (Fisher, 1932, § 14).

Variances of plots of several sizes and shapes are given in Table I.

Shape of plot. Table I shows that there was no consistent change of
variability relative to shape of plot. For any particular size the differ-
ences are nowhere statistically significant.

Size of plot. Fig. 2 shows that the reduction of variability with
increasing plot size is similar to that which has been observed in all
blank experiments previously reported, and that such reduction is less
than could be obtained by equivalent random replication.

The regression of variability on plot size can be more easily inter-
preted when the observations are plotted on double logarithmic paper
(Fig. 3). It becomes, in these conditions, linear. This means that the
relative reduction in variability for a relative increase of plot size is
similar throughout the range observed, that, say, doubling the plot size
always results, on the average, in the same proportional reduction in
variability.

The relationship can be described by an equation of the form

log V,=log V,—b" log z,
where V, is the variance of yield per unit area for plots of = units of

1 This arrangement was not ideal. Analysis of results for shape of plot would have
been considerably simplified if unit plots had been square. Further, to facilitate the
formation of numerous shapes and sizes of plots while still covering the same total area of
ground, the numbers of unit plots in each direction should be a multiple of 12. These
observations must have been made by all workers who have had occasion to analyse one
of these experiments, but it is a practical detail which is nearly always overlooked in the
preliminary planning.

2 This was determined graphically using probability graph paper described by K. G.
Karsten, Charts and Graphs, chap. 40. New York: Prentice-Hall Ine., 1925,



H. FAIRFIELD SMITH

Table I. Variances of plots of different sizes and shapes,
Canberra, 1934

Plot shape:
length in ft. Variance (V) Area used
Plot size (z) ——mM8M— for yield per Degrees Rows-feet
in units Across Along 8q. ft. in of (total area
of } sq. ft. rows rows decigrams freedom =30-36)
1 b3 1 2201 1079 Total
2 3 2 1220 539 »
1 1 1272 539 ”
3 3 3 863 359 "
1} 1 976 359 »
4 1 2 721 269 i
6 3 6 524 179 »
1 3 523 179 i
1} 2 582 179 ,.
3 1 562 179 »
9 3 9 413 119 »
1} 3 426 119 '
4} 1 450 29 27-10
12 3 12 334 89 Total
1 6 383 89 5
1} 4 386 89 »
2 3 326 83 28-36
3 2 310 89 Total
6 1 376 71 24-36
15 P 15 404 29 30-15
16 2 4 281 62 28-36
18 1 18 276 59 Total
1 9 272 59 5
1} 6 282 59 »
3 3 241 59 "
4} 2 214 53 27-36
9 1 275 35 18-36
30 15 1 158 35 Total
36 k3 36 102 29 »
1 18 178 29 "
1} 12 181 29 +
2 9 171 27 28-36
3 6 155 29 Total
4} 4 159 26 27-36
6 3 146 23 24-36
9 2 167 17 18:36
60 2% 12 98 17 Total
5 6 71 17 "
15 2 102 17 -
72 1 36 63 14 ”
3 12 102 14 “
6 6 96 14 24-36
108 1} 36 52 9 Total
120 5 12 32+ 8 "
15 4 98* 8 “

* Difference is not significant. z=0-550 £0-353.
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area. Since the variances have been estimated from varying numbers of
plots it is desirable that, when fitting a regression, each point should be
weighted inversely as its variance.! In fitting a linear regression to these
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1 1 1 L 1 L L 1 1 1 . -l L ?
| 2 3 4 6 8 10 20 30 40 60 80 100 120

Fig. 3. Logarithmic relationship between variance per plot and plot size. Ordinate:
logarithm of variance per plot (log s,%). Abscissa: logarithm of size of plot (log z).
Dotted line as in Fig. 2 (but ];asaing through the value for §2 estimated from the
regression instead of through the observed value). (Only plot sizes which fit exactly
into the total area are shown.)

data the observations of the dependent variates are logarithms of
variances. To a first approximation the variance of the logarithm of a
variance may be taken as
(2s8s)2 2
8 (loge sh*= =51 =1,
where 3s =s/4/(2n) represents the standard deviation of s which may be
considered small relative to the mean of s, s2=V, and » is the number of
degrees of freedom upon which the estimate of variance is based.

! Btatistical methods of curve fitting rest on the assumption that observations are
independent. It is clear that this condition is not fully satisfied in the present case, but all
we require is a measure of an empirical relation and tests of significance are of only secondary
interest.
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Weighting the observations, then, inversely in proportion to = the
regression was found to be

logy, V,=3-3298 —0-7486 log,, =,
2137

or Vo= 2078

where s, or 4/V, is in decigrams per % sq. ft., and z is in units of
4 sq. ft. The apparent! standard error of the b’ coefficient (0-7486) is
+0-0132.

3. REVIEW OF BLANK EXPERIMENTS PREVIOUSLY REPORTED

In order to determine whether the equation representing the relation-
ship between plot size and variability as observed in the Canberra blank
experiment might be generally applicable other published data have
been examined. Table IT and Fig. 4 show the results for thirty-nine
experiments. Excepting only a small number which had too few plots
to give reliable results, or in which data have not been presented in a
form adaptable for our purpose, Fig. 4 includes results of all published
work available in Canberra libraries. Straight regression lines have been
drawn in freehand, except that for WA and P the best fitting lines have
been calculated.

It is clear that in general the regression of the logarithm of standard
deviation on size of plot is substantially linear. Fields P, WA and WB
show a tendency to curve upwards. For each of four experiments with
sweet potatoes (FA to FH) two regressions are shown—one for single row
(broken line) and one for multiple row plots. Since, however, the author
(Thompson, p. 395) gives reasons for expecting that single-row plots
should be more variable, and that parts of the same row may be corre-
lated owing to peculiarities of technique with sweet potatoes, this has
Presumably nothing to do with soil heterogeneity. In fields HB, L, U,
X and Y the results are affected by shape of plot, indicating that the soil
18 more variable in one direction than in another.

The values of the regression coefficients observed will be discussed in
a later section after attention has been given to some theoretical matters.
’El‘he extent to which variation of the coefficients may be due to differences
In crop, soil or season cannot be satisfactorily determined from present
data. Since errors of observation tend to lower correlation and the
regression coefficient is a function of the correlation of adjacent areas,
errors in technique—sowing, harvesting, threshing, weighing—and
genetic variability of plants will tend to raise the observed value of b’



Crop Location
Wheat Victoria
Rothamsted
"
Nebraska
Missouri
Australia
Wheat irr. Idaho
Maize Arkansas
Sorghum for.  Texas
Beeé Minnesota
Potatoes W, Virginia
"
"
"
Saskatchewan
Ormskirk
Sweet potatoes  Maryland, 1020
Maryland, 1930

South Carolina, 1929
South Carolina, 1930

Table II. Review of blank experiments giving estimates of b coefficients
of heterogeneity (see Fig. 4)

No. of
unit
Size plots
of unit in
plots,  experi-
8q. ft. ment,
272 160
87 500
082 1002
30 224
33 3100
05 1080
23 54
15 1-HO
242 432
55 1920
218 200
Gl 00
Gl H00
35 200
35 186
35 192
a5 258
35 3300
66 876
3 G18
45 1000
45 2000
45 1560
45 1035

o,

for
lots
ofll,f-lcl
acre

50
63
44
49
37
G0
17
31
105
142
79
41
5T
38
180
10-5
168
164
25:1
B0
70
11-1
107

Mean
yield
ewt./acre b
122 o444
177 046
197 054
194 054
11-5  0-80
115 0-58
259 074
215 054
336 022
-_ 021
805 042
5806 048
326 —_
323 —
840 020
1167 045
583 046
014 06
S 032
416 078
1027 066
606 058
23 0T

b
033
0-37
0-51
049
0-80
047
072
0-H
0-08
005
0-35
0-39
0-50
074
018
37
0-30
010
026
071
0-50
077
065
0-56
073

Author
Forster & Vasey
Mercer & Hall
Kalamkar
Montgomery

} Day

Smith

Wiebe

McClelland
Stephens & Vinall
Mercer & Hall
Tmumer

Immer & Raleigh
Westover
Kalamkar
Justensen
Thompson

Journal reference
Proe, roy. Soc. Vict. (1928),40, T0
J. agrie. Sei. (1911), &, 107
J. agrie. Sei. (1932), 22, 783
Bull, U.8, Dep. Agric. (1913), 269
J. Amer. Soc. Agron. (1920),12, 100
This paper, Fig. 3
Unpublished, Ab, Fig. 5
J. agrie. Res. (1935), 50, 331
J. Amer. Soe. Agron. (1926),18, 819
J. agric. Res. (1028), 37, 629
J. agric. Sei. (1911), &, 107
J. agric. Res. (1932), &4, 640
J. agric. Res. (1033),47, 501
Bull. W, Va Dep. Agrie. (1024),189

" -

" "
J. agric. Sei. (1932), 22, 373
J. agrie, Sei. (1932), 22, 366
J. agrie. Res. (1934), 48, 379

r-
ence,

Fig. 4

| 2ol o=

Hwmean |

WA
wB
EA
EB

ED
EE
FA
FB

FD

Reference
n
Cochran's
catalogue
119
124
123
126
118
130

132



Cotton irr. Sakha, 1 — .. 3
821 1131 160 10-5 032 0-19 Bailey & Trought Bﬁv.%ﬂ‘;l‘iﬁ: é{;rw Egypt, Tech. Sci. GA 25

Gemmeiza, 1921 1131 160 126 — 016 ¥ » 5 i GB 25

Gemmeiza, 1922 1131 160 1 — 0-58 053 7 35 % GC 25

Giza, 1921 452 154 252 —_ 034 021 Wi - » GD 25

Giza, 1923 452 160 150 —_ 047 040 " - - GE 25

Cotton Texas (Col. St.) 144 288 280 - — 53 Reynolds et al. J. Amer. Soc. Agron. (1934),26, 725 HA 32
Texas (Chill.) 157 288 — —  — 03 » " " HB 32

Soybeans for. W, Virginia, 1925 20 1008 06 303 024 011 Odland & Garber  J. Amer. Soc. Agron. (1928), 20, 93 1A 95
Soybeans seed W, Virginia, 1926 20 1540 60 107 040 034 » Wi # 1B 95
Pineapples Hawaii (K 19) - 2 - — 042 020 Magistad & Farden J. Amer. Soc. Agron. (1034), 26, 631 KA 69
Hawaii (K 1) - 64— — 04T 036 » " » KB 69

Natural pasture  Australia 29 720 ]g«g g; (u):t;? g-lgrg Davies B“féc“". sei. industr, Res. Aust. (1031), L 67
Oranges irr. Riverside 3840 195 110 102 0-41 031 Parker & Batchelor Hilyardia (1932), 7, 81 M 65
Arlington 484 1000 3 110 0-24 0-10 Batchelor & Reed J. agric. Kes. (1018),12, 245 NA 64

Antelope H. 484 405 256 150 36 023 .. " " NB 64

Villa Park 484 240 98 108 041 0-32 - " " NC 64

Lemons irr. Upland 576 34 202 183 043 034 - - . o] 36
Walnuts irr. Whittier 2500 280 875 135 052 047 " " " P 115
Apples irr. Utah 484 224 321 204 051 07 ] 5 “ Q 4
Various crops  Quebec 174 175 - - 034 020 Summerby .‘Iarsﬁ Bull. Maclonald agric. Coll. (1934), — 41
T —

Theorctical curve if correlation of adjacent areas were zero, ur reductivn of error obtainable with random replication (b =10).

b* is the slope of each regressi timated graphically from Fig. 4.

b is the value estimated as appropriate for an |nlin{leiy large field as deseribed in the text. As delined in this paper the coeflicients refer to regression of variance on plot size.
Published data, which wmlumd on lug-log paper for the preparation of Fig. 4, give invariably standard deviations or coeflicients of variability. The slopes of regres-
sions as shown in Figs. 4 5 are thus one-hall of the values in the table.

C shows data for 2 years combined, 1900—0, 1910—X.

U, & =080 for pluts 5 ft. wide, mnrkedtp, 038 fur all uther shaped plots, single row pluts marked ©, intermediate shapes marked [J.

WA and WB, error variance estimated for within blocks of 5 plots.

EA to ED, different strains of the snrlleﬂ)ulah) variety on adjacent areas of soil. Mean b° =042, b =031,

X, single row plots only within blocks of ¢ plots,

Y, single row plots only within blocks of 5 plots.

FA to FD, multiple row plots. Single row plots shown as broken lines FE to FIT (see text),

HA, within blocks of 12 plots,

HB, single row plots only within blocks of 12 plots.

L, pluts 5 links wide marked p, b* =0-63; other shapes O, 4" =0-37.

M, guarded plots, means of 6 years.

N to Q‘_\mib luts =area oceupied by a single tree. N to I in California, exact loeativn given fur reference in the publication concerned.

Irr. =irrigated. For. =forage.
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as compared to a value characteristic of the soil alone. It would be of
theoretical interest to obtain coefficients characteristic of the soils alone,
but it seems at present impossible to disentangle the effects of these
incidental variables. This is, however, of little practical consequence,
since for purposes of experimental planning they should be included.
They will presumably vary with different crops.
The regression

log V,=log V,—b"log «,
when given the appropriate constants, may be considered to describe
the soil and plant heterogeneity of an observed field. In order to com-
pare the variability of plot yields for different crops and soils the re-
gressions observed in Fig. 4 have been converted to show the regressions
of the coefficient of variability on plot size in square feet. The results
are shown in Fig. 5. The corresponding coefficients of variability for a
standard size of plot (1/40th acre) and mean yields are given in Table II.
The crops fall roughly into three groups: wheat, mangolds, beets, soy-
beans and sorghum (forage) seem to be least variable; maize, potatoes,
sweet potatoes, cotton and natural pasture are intermediate; and fruit
trees are most variable.

4, VARIANCE WITHIN BLOCKS

In order to bring results deduced from blank experiments into con-
sonance with modern experimental practice we require to consider the
variability of different sized plots within blocks. At first sight this
complicates the problem, since the possible combinations of varying
sizes and shapes of plots with varying sizes and shapes of block are very
great. But if shape may be ignored and we have a general law giving the
variability of plots of varying size, then an expression for variance
hetween, and thence for that within, blocks can also be derived.

In §§ 2 and 3 we have considered simply variance of plots over the
whole area of the fields used for the experiments. But size of field is
purely arbitrary, and any given field may be considered as but a single
block of a larger field. It is advisable, therefore, that the terms should
be more accurately defined to indicate the area over which a variance is
measured. Let the variance of the mean yield per unit area, of plots
of z units of area, over a block of m plots be (V,),,. Then the regression
which has been empirically observed for a field having » plots is

lOg ( Vm)n;’z == log ( Vr.)n = IOg x.



11 9]qu], 998 £oy do,f *(z Soy) jo1d jo ezs Jo wiyyuuSo] :ussosqy -(“s Sof) joid 1od uoywIAep parvpuwys JO wyuTo] (ojRuIpI() *oInFeINI]
oy3 ur pegtoder sjuewnadxa yuvlq woiy wiep woif joid tod uonwiAep pavpuwys puv ozis joid uoomjeq drjsuorge[es onuyjuudoy § "Fig

0% D0F Dt 00Z
L . i e

001 0L 05 OF 0f OV oL £ S F £ i 0
P 2R I R T A 5 [ RN N (N T o R, o

¥
&
-2
o
0

o




(raa0w T="75 "bs 9g‘cy)
(“IT o1qey, ut wyeq) 33 “bs ur ozs qo[d uo ApqIqertes jo JUBIdP0D Jo suolssaiFoyy ‘¢ “Siy

LT

000168 £ 9 ¢ ¢ ¢ Z 0lL68 LY ¢ k€ 4 MWle8L9 ¢ + ¢ 4 0168 L9 ¢ ¢ ¢ 7 1
3 it ) e T T EE T 1 T 3 O A PR i T s | T TTTT T T T 1 T !
*r—O0—70—0—0 S Qi
XXX XX x—x 241 [ramey] —————a uonon
wornod jooms R E TP PP PP sueaqfog -z
—_——— e — pue S01e1e ] 000 e s1o0y]
—_— e — oG fozIEp —1¢

0f
0
05
2]
08
00

1



H. FAIRFIELD SMITH 15

But the size of the field, n, is arbitrarily fixed, and if this regression is
theoretically sound it should hold good for any alternative size of field
which we may wish to consider as the area over which variances should
be measured. But if # be varied the above regression becomes curved
for any value other than that originally assigned. The regression is
therefore inconsistent with the requirement that the law shall be un-
affected by variation in the size of the field.

This difficulty is overcome if we postulate an infinitely large field of
which an observed field may represent a single block and suppose that

the law be log (Vo)w=log (V)u—blogz, ... (1)

or (Va)o= &)‘a .

When b=1 this gives the ordinary formula for the variance of the mean
of  independent units.

Since a block is merely a large-size plot the variance between blocks
can be estimated from the same equation, and thence the variance of
plots of = units within blocks of m plots is given by an analysis of
variance, where A tends to oo, as follows:

D.F. Mean square
Between blocks (A=1) m (Vem)y
Within blocks A{m—-1) Y
Total (Am -1) (Viam

thus in the limit
_h ( Vz)cu —m ( me)co m (1 iy m‘_b} ( Va:)n
(Ve)m= = BT Wum (2).

For given values of m and b, (V) m/(V2)w is a constant irrespective of .
Thus the association between neighbouring plots is of such a type that
the variance per plot within a block of 7 plots bears the same ratio to
the total variance per plot in an infinite field whatever the plot size; or,
alternatively stated, the intraclass correlation between groups of m
plots is the same whatever the size of plot.

On this hypothesis the variances recorded in §§ 2 and 3 should con-
form to a regression of the form

log (V:)n.l':—loc (Vl)ao -b lﬂg .£'+10

n (1 =2

e (3)
This is a curve slightly concave downwards, but, as the curvature
becomes appreciable only when z/n approaches one-tenth and in this
Tegion the variances are not well determined, the curvature could not
be detected by the methods used in the preceding sections.
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The value of b’, however, estimated from a regression for a finite
field will differ substantially from the equivalent b for the infinite field.X
The most expeditious way to convert the observed 4”’s into equivalent
b’s is to determine the corrections for a series of values of b over the
given range of z/n. This was done graphically. The magnitude of the
corrections obtained is illustrated by the following table:

b 10 0-8 0-7 0-6 0-5 0-4
b’ in range z/n from 0-001 to 0-01  1-0 0-804 0-710 0-617 0-528 0-443
" in range x/n from 0-01 to 0-1 1-0 0-822 0738 0656 0578 0-504
b 0-35 03 0-25 0-2 0-15 01
b in range z/n from 0-001 to 0-:01 0-403 0-364 0-326 0-291 0-257 0-226
b’ in range z/n from 0-01 to 0-1 0-469 0434 0402 0371 0-343 0312

Equation (2) indicates that the expectation for the efficiency of a ran-
domized block experiment having m plots per block relative to one with
n plots per block is
{Vz)n = n {'m'_ 1) ( _n_b) (4)
(Ve)w m(n—=1)(1—m®)~ 777

As a guide to the effect on experimental error of changing the size
of block, the curves for (V,),,, taking (V,)» equal to unity, for various
values of m and of b are plotted in Fig. 6. As an example of the use of
these, suppose we wish to conduct an experiment with forty treatments
and we want to know if it is worth while to adopt a complex design by
which block size may be reduced (for example, by confounding inter-
actions or “ pseudo-factors” (Yates, 1935, 1936)) as compared to a simple
lay-out using blocks of forty plots. If we expect the field to show a
“b coefficient of heterogeneity” of 0-2 the expectation for relative
efficiencies of 5, 10, 20 and 40 plot blocks is

0-535 0-535 0-535 0-535

0-344°0-410 " 0-475 " 0-635
and it will be worth considerable effort to be able to use small blocks.
But if the b coefficients be about 0-7 the expectation of relative efficiencies
is only

=1-86:1-30:1-13: 1,

1-12:1-06:1-03 : 1,
and it would be best to retain the simplicity attaching to the larger
blocks with a simple design.
In a similar manner to the derivation of (2) above it can be shown

1 It should be noted that an observed value of b depends in part on the number of
unit plots observed. This condition can be demonstrated from actual data, or may be
deduced from an hypothesis that a linear logarithmic regression may be applicable for a
finite field of given size, as well as from the law for a theoretical infinite field.
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that where differential directional heterogeneity is not present (so that
shape of block is unimportant) the error variance in an mxm latin
square may be represented by

m (1 —m=b))2
(Vx)ms={(,m—_1)} (Va)o-
=08
—-'""'_b_,0.7 T
0.9 /,*-"”7_____. ]
08 /1A b3 1
e
b.ﬁ-# | —
i '//’/ —’__1-_’__
// =02 B
)'o-a/ =
/L A i i .
b=
ol /,/
03 /
y
b= 10 20 30 )

m

Fig. 6. To show reduction of error variance obtainable by subdividing an area into blocks
for different values of the b coefficient of heterogeneity and of the number of plots per
block (m). The ordinate, ¥ =(1 —m=)/(1 —m~1), shows the ratio of error variance
within blocks to variance over an infinite area.

The frequency distribution of the adjusted b coefficients given in
Table IT is
Adjusted b 0-05- 015- 0-25- 0-35- 045- 0535~ 063- 075- Total
015 025 035 045 055 065 075 085
Frequency + 4 8 6 7 4 3 1 37

L)

The mean is about 0-4, but since the limiting values of b are 0 and 1
al.ld three-quarters of this range is covered by the observations, the
diversity of conditions is very great.

5. THE OPTIMUM SIZE OF PLOT

From equations (1a) and (2) the information per plot of size z in
blocks of m plots is
1 (m=1) 2

(Vm m(I=m=) (V)"

Journ. Agric. Sei. xxvin .
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The cost per plot may be given by a linear regression
K, + Kz,
whence the cost per unit of information is
m (1—-m™) (K, + K;2) (Vi)

(m-1)=2t - U (4)
This is minimum when
__ bK, _
z——u——(l_b) B 0 (5)

This provides a formula for estimating the most efficient size of plot for
any given experiment. It is not affected by the number of plots, which
may be determined either by the area available or by the number which
will probably be necessary to reduce the error variance of treatments to

any assigned figure.

6. GUARDED PLOTS

In experimental work it is customary to discard guard areas around
all plots. The effect of this condition has been ignored in the preceding
discussion.

Suppose that an area be divided into n plots side by side, of which
each alternate plot may be taken as the guard area. Then if n is even
we have the following analysis of variance:

D.F.
Between experimental plots, £ in-1
Between guard plots, ¢ in-1
E-G 1
Total n-1

The mean square for £ —@ is likely to be smaller than the other two
components, since it depends on the comparison of neighbouring plots,
but if n be large the mean squares between E and between G will be
only slightly larger than the mean square for the total, and may for
practical purposes be regarded as approximately equal to it.

Extending this argument, we may say that if m guarded plots each
with “test-area” z occupy the same total area as m' unguarded plots
of the same area z, then the variance within blocks of the m guarded
plots will be equal to (V). The procedure of § 5 may thus be simply
modified so as to be applicable to guarded plots.

Thus, if a block consists of a single row of plots side by side, the end
guards (area A) may be considered as lying outside the block. The area
occupied by the side guards bears to the “test-area” z the ratio
B = (W — w)/w where w is the width of the test area and W the width
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of the test area plus guards. If K, is the cost per unit area for handling
guard areas, the cost per plot may be given by:

K, + K+ K, (4 + Bu).

Thus, proceeding as before, the cost per unit of information is found to
be a minimum when

_ b(K,+ K,4) 6
“T=-b6(K,+EB) wmesur )

x

| T
; /

| | |
Log, Z -2 -1
z Yo v Y

1 1 ! 1

e

2 4 8 20 50
Fig. 7. To show increase of cost (or of error variance) if the optimum size of plot be not

used. Ordinate: cost relative to cost using the optimum size of plot. Abscissa:
logarithm of size of plot relative to optimum size.

7. CosT OF USING PLOT SIZES OTHER THAN THE MOST EFFICIENT
Equation (4) gives the cost per unit of information as
Const. (K, + K,z) zt,

which is minimum when
I bK,
T(1-b) K,

=

4
(5]



20 Heterogeneity in Yields of Agricultural Crops

If the most efficient size plot be not used the relative cost is

y=miﬁ(.)s:ost=bz“—b] +(1-=-b)z Ll (7)
=beu—b)1nz+(1_b) et lnz, ...... (8)

where z is z/z,, that is the ratio of the size of plot used to that size which
is most efficient. The second form (8) is the more convenient both for
calculation and to give a symmetrical scale for relative plot sizes. It is
of interest to note that if b=0-5, (8) is the equation of a catenary curve.
Fig. 7 gives the curves for b=0-3, 0-5 and 0-7. When b=0-5 efficiency is

96 9, if plots are double or half the optimum size.

80 9, if plots are quadruple or quarter optimum size.

63 9, if plots are eight times or an eighth optimum size.

479, if plots are sixteen times or a sixteenth optimum size.

The value of b does not greatly affect these estimates in the region a
quarter to four times the optimum size. Beyond this range if b is less
than 0-5 it is more serious to have plots which are too large than to have
plots which are too small, and vice versa.

8. ARITHMETICAL EXAMPLE OF ESTIMATING THE MOST EFFICIENT
PLOT SIZE FOR A GIVEN EXPERIMENT

In analytical yield trials it is required to count plant numbers, tiller
numbers and ear numbers, weigh straw and grain, and estimate weight
per grain. The b coefficient of the Canberra experiment field has been
estimated to be about 0-75. Sowing with a Woodfield dibber fixes the
rows (width of plot) at 4 ft., and rows are 6 in. apart. Six inches around
each plot are discarded as guard. We thus have 4 =4 sq. ft., B=0-33.
Costs other than labour are relatively negligible, and it is assumed that
the same class of labour is used throughout. From past experience it
has been estimated that, on the average,

(1) Preparing seed requires 0-005 man hour per sq. ft.
(2) Sowing » o 0017 . sq. ft.
(3) Counting plants at braird w0002 . sq. ft.
(4) Counting tillers . 0062 . sq. ft.
(5) Observing earing and flowering dates » 0033 . plot
(6) Counting plants near harvest » 001 v sq. ft.
(7) Cutting out guards ,» 0001 ¥ sq. ft.
{ég“ Harvesting and weighing sheaf » gggg " ;[1161;&.
(9) Counting ears , 0033 23 sq. ft.
(10)) - (0-016 i eq. ft.
(100 Thiwshing. » 10016 b tot
(11) Weighing grain ,»  0:016 o plot
(12) Estimating average weight per grain w006 i plot

(13) Statistical analysis w010 W plot
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Whence
K,=(5)+(8a)+(10a) +(11) +(12) +(13) =0-25 man hour per plot.
K,=(1)+(2) +(3) +(4) +(6) +(8) +(9) + (10) =0-18 man hour per sq. ft.
K,=(1)+(2)+(7)=0-023 man hour per sq. ft.
b(K,+K,A) 0-75 (0-25 +0-023 x 4)
T=T=b)(Ky+ K,B)  0-25 (0-18+0-023 x 0-33)

=5sq. ft.

9. DiscussioN

The regression of plot variance on size is an empirical relationship
for fields of a size normally considered in experimental work. Since it
implies that adjacent areas are equally correlated irrespective of their
size and this condition must sooner or later break down, the relationship
cannot be extended indefinitely. It nevertheless appears to provide a
method of evaluating approximately the average relative efficiencies of
varying sizes of plots and of blocks. The wide range of values of
b coefficients is a measure of the variation in types of soil heterogeneity.
A similar degree of variation is demonstrated by the estimates of
efficiencies of various randomized block and latin square experiments
reported by Yates (1935). It is consequently impossible to forecast
accurately the relative efficiencies of different arrangements for a field
of whose heterogeneity little or nothing is known. One might perhaps
anticipate that the b coefficients should be low for fields known to be
heterogeneous and high for fields of fairly even fertility, but the absence
of correlation between b and coefficients of variability in Table III
indicates that any such assumption may not in fact be justified. So far
as present evidence goes total variability and the manner in which
varying fertilities are distributed appear to be two distinct features
which must be separately considered in any quantitative measure of
S?il heterogeneity. It is to be noted, however, that the optimum plot
8ize and the increase in information resulting from reduction in the
number of plots per block is dependent only on the value of b.

Information about the persistence of similar values of b for a given
field over several years and with different crops is required before we can
say how far it may be worth while to determine coefficients appropriate
for- fields which are to be frequently used for experimental work. No
evidence on this point is at present available,! except that if heterogeneity

! Data which might be used to test this question have been given by Summerby (1934)
for oats, alfalfa and maize in 3-5 years, and by Garber et al. (J. agric. Res. (1926), 33, 255-68)
for oat hay and wheat grain in 2 years, and (J. Amer. Soc. Agron. (1931), 23, 286-98) for

Maize, oats and wheat in 3 years. The present writer is, however, unable to devote to this
Problem the time required for the necessary calculations.
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types were persistent one might perhaps expect the covariance of plots
in successive years to be more useful than it has been found to be.

Since the regression of variance on plot size is a function of the
correlation of adjacent areas, it appears theoretically inevitable that
shape of plot should have some effect, since the correlation of ends of
long narrow strips must usually be less than' that at opposite sides of a
square of equal area. The shapes of plots considered may therefore be
expected to have some effect on the regression. The importance of plot
shape is of course particularly accentuated in fields which show differ-
ential directional heterogeneity (e.g. U and L). In a field where the
orientation of the variability is known and is reasonably persistent, long
narrow plots with a particular orientation will obviously be called for.
In such circumstances it might be worth while to make use of two b
coefficients with assigned directions to describe the heterogeneity; one
being applicable for estimates regarding size of plot, the other for con-
siderations of block size. The effect of different shapes of plots or of
blocks appears to be responsible for the fact that Yates (1936) using
data from Parker & Batchelor obtained greater efficiency for small
blocks than would be indicated by the regression M of Fig. 4 which is
based on only four variances given by the original authors.

10. SuMMARY

Using data from a blank experiment with wheat it was found that
the regression of the logarithms of the variances for plots of different
areas on the logarithms of their areas was approximately linear. A
graphical review of variances, etc., reported in the literature for thirty-
nine other blank experiments indicates that the results of most such
experiments conform to the same law.

Itis shown that the above law can be generalized (so as to be applicable
to any size of field) by applying a certain adjustment to the regression
coefficient b’, so as to give a modified coefficient b applicable to an
“infinite” field.

From this generalized relationship there has been deduced an
expression ((4), p. 16) to indicate average relative efficiencies to be
expected for randomized block experiments with varying numbers of
plots per block in a field for which the coefficient b is known.

A formulae (5), which may be used to estimate the most efficient size
of plot for any given experiment, has also been deduced. The cost of
using plots of other than the most efficient size is indicated graphically
in Fig. 7.
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